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Abstract. Internet of Things (IoT) sensor data or readings evince varia-
tions in timestamp range, sampling frequency, geographical location, unit
of measurement, etc. Such presented sequence data heterogeneity makes
it difficult for traditional time series classification algorithms to perform
well. Therefore, addressing the heterogeneity challenge demands learning
not only the sub-patterns (local features) but also the overall pattern
(global feature). To address the challenge of classifying heterogeneous
IoT sensor data (e.g., categorizing sensor data types like temperature
and humidity), we propose a novel deep learning model that incorporates
both Convolutional Neural Network and Bi-directional Gated Recurrent
Unit to learn local and global features respectively, in an end-to-end
manner. Through rigorous experimentation on heterogeneous IoT sensor
datasets, we validate the effectiveness of our proposed model, which out-
performs recent state-of-the-art classification methods as well as several
machine learning and deep learning baselines. In particular, the model
achieves an average absolute improvement of 3.37% in Accuracy and
2.85% in F1-Score across datasets.

Keywords: IoT Sensor Data · Data Heterogeneity · Deep Learning ·
Time Series Classification

1 Introduction

IoT sensor data1 or readings exhibit time series-like sequences. The classifica-
tion of such sequence data has emerged as an in-demand research area, given
the ubiquitous presence of IoT sensors in our daily lives in accordance with the
growing dominance of mobile computing [10,20,35]. The next decade is predicted

1 Aligning with the works of [5,21,22], we define IoT sensor data as sequences of raw
numerical readings/observations obtained from IoT sensors over time.
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to see IoT devices creating $14.4 trillion worth of value across different indus-
tries [3]. IoT sensor devices are widely adopted in the sectors like healthcare,
environmental monitoring, traffic management, and energy management, in a
diverse range of settings [5,21,22]. This naturally causes the IoT data to vary in
timestamp range, observation configurations, sampling frequency, unit of mea-
surement, and geo-location [30], which leads to the production of a plethora of
IoT sensor data with inherent heterogeneity [2,9,21]. The inherent heterogene-
ity, where sensors of the same type (e.g., temperature) record data in different
units of measurement (Celsius or Fahrenheit) or with varying sampling frequen-
cies, results in inconsistent and non-repetitive complex discriminatory patterns
in time-series readings from IoT sensors. In such scenarios, time-series sensor
readings/sequences display a mixture of local sub-patterns occurring at irregu-
lar intervals, forming a global pattern of heterogeneous nature at times.

The growing use of IoT sensors, integrated with a variety of mobile com-
puting devices, highlights the importance of accurate classification, such as dis-
tinguishing between temperature and humidity data, to ensure the reliability of
dynamic systems like smart homes [7]. The heterogeneous nature of IoT sensor
data also affects the data quality [10], making the classification tasks challenging
even for the existing machine-learning techniques. It also hinders the effective
re-purposing of these data for interoperability [20]. For instance, the traditional
time series classification methods often underperform [1,22] when it comes to
classifying IoT sensor data in a multi-class setting [1,2].

Recent research has witnessed the development of machine learning (ML)
algorithms that leverage textual metadata (e.g., sensor names and descriptions)
to ameliorate the classification of IoT sensor data [19,21,22]. However, such
textual metadata are often not available or presented inaccurately in IoT sensor
datasets [2]. The expansion of IoT systems also increases the chance of significant
metadata loss due to disrupted or corrupted connections to configuration meta-
data, making collected IoT sensor data unusable [5]. Moreover, depending on the
availability of accurate metadata limits the capability and feasibility of learn-
ing where only numeric sensor readings are available [2,4]. Though optimized
ensemble machine-learning algorithms [21,22] and feature transformation-based
strategies [2] recently achieved notable successes in heterogeneous IoT sensor
data classification, those approaches lack generalizability and scalability and
they are also not deeply learned end-to-end processes [14]. Along with the rapid
advancement of artificial intelligence, deep learning (DL) algorithms have demon-
strated massive potential in time series classification [14] due to their advantage
of representation learning. Some studies [6,26] developed DL-based solutions for
IoT sensor data classification but only considered a homogeneous data domain.
There also have been studies that incorporated deep learning-based strategies for
IoT sensor data forecasting [24,28]. However, there were no DL models specifi-
cally designed for heterogeneous IoT sensor data classification. In search of such
a DL solution, we first rigorously investigated the state-of-the-art deep time
series classification algorithms including InceptionTime [15] and TapNet [34],
along with other traditional machine learning and deep learning based algo-
rithms. From our empirical study, we found that in terms of the heterogeneous
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IoT sensor datasets, existing solutions do not perform well which was similarly
highlighted in previous studies [1,2]. Though there exist effective ensemble learn-
ing models like MACE [21] and TKSE [22], these models are highly complex,
easily overfit, and do not learn the underlying artifacts of heterogeneous IoT
sensors with a contextual-learned approach.

To this end, we propose a novel end-to-end deep learning model with the aim
of better capturing the heterogeneous patterns of IoT sensor data that would
lead to enhanced classification performance. The model learns ensembled local
neighborhood-based features with Convolutional Neural Network (CNN) convo-
lution layers of varying kernel sizes, and global whole series sequential features
with a stack of Bi-directional Gated Recurrent Units (GRUs). We deliberately
name the model as DeepHeteroIoT for ease of reference. The main contributions
of the work are summarized as follows:

– We propose the first end-to-end DL model for heterogeneous IoT sensor data
classification. The model facilitates a novel combination of CNN and Bi-
directional GRU modules to respectively learn local and global patterns of
heterogeneous IoT sensor data.

– We provide rigorous empirical comparisons across multiple IoT datasets along
with the development of a new heterogeneous IoT sensor dataset. Experimen-
tal results demonstrate that our deep learning model achieves state-of-the-art
classification performance in both accuracy and F1-score.

2 Related Works

IoT Sensor Data Classification. IoT sensors typically generate numerical con-
tinuous data, forming numerical sequences when collected at regular or irregular
intervals over a specific time period. The task of classifying these continuous
numerical series is akin to problems such as Time Series Classification (TSC)
or Sequence Classification. To deal with challenging heterogeneous IoT sensor
data, Montori et al. [22] proposed a two-layer sequential ensemble approach of
classifiers where individually trained classifiers are stacked during the predic-
tion pipeline in a sequential manner to filter out classes with fewer prediction
probabilities. In their extended version [21], an improved multi-layer sequential
ensemble model was proposed with novel heuristics for selecting and ordering
classifiers and filtering classes between classifiers. Borges et al. [2] proposed a
transformation-based classification strategy that converts raw sensor data to
an ordinal pattern with improved feature representation and class separability.
Postol et al. [25] proposed a topological data analysis-based strategy for noisy
IoT sensor data classification. A random forest-based strategy was recently pro-
posed to classify a signal type being read from an IoT sensor utilizing raw IoT
sequence data [5]. Moreover, a probabilistic data mining approach [4] incorpo-
rating slope distribution computation via linear approximation of time series
sequence was first developed for heterogeneous IoT sensor data classification.
Although previous approaches achieved notable classification performance, they
have only sought global patterns from different perspectives. Several studies have
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explored the potential of deep learning for classifying IoT sensor data for tasks
such as intelligent waste management [26] and human activity recognition [6].
However, the sensors used in these domains are predominantly homogeneous
and share similar characteristics. To the best of our knowledge, the development
of end-to-end deep learning algorithms to better capture rich low-dimensional
temporal semantics of heterogeneous IoT sensor data (that comes from diverse
environments) is still missing in the literature.

Time Series Classification. The time series classification domain has seen many
developments over the years such as the classical methods of Dynamic Time
Warping (DTW) and Weighted Dynamic Time Warping [1] that rely on whole-
series distance-based similarity measures. Additionally, methods that work with
the approach of subsequence extraction, coined as “shapelets” based strategies,
have been popular in data mining [27,33]. However, to deal with the dimen-
sionality issue present in the distance measure-based approaches, a lower-bound
symbolic representation of time series sequence named Symbolic Aggregation
approXimation (SAX) [17] was introduced to first transform data via Piecewise
Aggregate Approximation (PAA) and then symbolize the PAA representation
into a discrete string. Lin et al. [18] proposed a histogram-based high-level feature
extraction strategy utilizing PAA through SAX representation for time series
classification, taking inspiration from the popular “bag of words” strategy in the
domain of text mining. Nevertheless, the majority of conventional techniques
concentrate on individual time series attributes like shape or frequency. These
methods lack scalability and efficacy in handling the diverse characteristics inher-
ent to the IoT data [21]. In recent years, learning-based methods that incorpo-
rate state-of-the-art deep learning algorithms have been developed for time series
classification due to their capability of learning low-dimensional feature repre-
sentations automatically without domain knowledge [14]. Convolutional Neu-
ral Network (CNN) based model InceptionTime [15] and Attention-mechanism
incorporated hybrid approach TapNet [34] are two prominent examples of such
effective deep learning-based solutions for time series classification. Addition-
ally, ensemble or hybridization of deep learning algorithms including CNN and
recurrent neural networks (RNN) have shown great potential in extracting rich
semantics of time series in terms of sensor data classification [13] and forecasting
challenges in various domains such as water level prediction [24] and short-term
residential load forecasting [28]. While current state-of-the-art time series classi-
fication algorithms exhibit strong performance on general time series data, they
often lack the specialized design required to effectively capture the inherent het-
erogeneity within IoT sequence data. As a consequence, there is a critical need to
develop novel methodologies that can accommodate the varying characteristics
of IoT sequence data and extract meaningful insights from these distinct and
heterogeneous sources.
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3 DeepHeteroIoT: Our Proposed Deep Learning Model

In this section, we delineate a brief description of the key components of our
proposed end-to-end deep learning model. As represented in Fig. 1, our proposed
deep learning model, DeepHeteroIoT, extracts learned feature representation of
global patterns using a stack of bi-directional GRU and local patterns using an
ensemble of decoupled CNN stacks with varying kernel sizes. Learned local and
global feature vectors are then combined through a concatenation layer which
connects to a multilayer perceptron (MLP) head for final classification.

Fig. 1. An overview of our proposed deep learning model with learnable local and
global learnable patterns for heterogeneous IoT sequence data classification

Deep Local Features. Initially developed to tackle complex issues within
Computer Vision, Convolutional Neural Networks (CNNs) leverage local
neighborhood-based features to enhance the distinction between different classes
by shaping decision boundaries. As the realm of deep learning continues its rapid
evolution, CNN architectures have showcased significant potential in extracting
robust spatial features from input sequences. By employing convolutional oper-
ations with small kernel sizes, CNNs excel at capturing local intricacies, making
them an excellent fit for intricate time series or sequence analyses. In our pro-
posed deep learning model, we introduce a customized novel CNN architecture
tailored to seamlessly integrate into our end-to-end framework for IoT sensor
data classification. A single convolutional block incorporated in our proposed
model can be expressed mathematically;

Ff = ConvBlock(X, f, p) (1)

In Eq. 1, X represents a vector containing input sequences such as [X0, X1, ...
... , Xt], distributed over t timestamps, f indicates kernel size for convolutional
layers, p indicates the type of padding to be incorporated and Ff is the feature
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space computed base on kernel size f . Also, each ConvBlock consists of a stack
of convolutional layers with designated kernel size and pooling layers. Each set
of convolutional blocks comprises nine consecutive 1D-convolutional layers. Fol-
lowing the 3rd and 6th convolutional layers, a max-pooling layer with a size of
2 is incorporated. Each convolutional block ends with a Global Average Pooling
layer [31]. The pooling operations allow the models to downsample feature maps
in the way the most significant information has been retained and passed to
the next layer while reducing the spatial dimensions. Within each convolutional
block, the sequence of stacked convolutional layers is set up with 128 filters for
the layers preceding the initial max-pooling stage, and subsequently, 64 filters
are employed for all successive convolutional layers.

The size of the kernels used in convolutional layers is of utmost importance
for capturing local features, as they function as windows to compute features
on sub-patterns extracted from the entire time series like sequences at a lower
level. In Algorithm 1, local deep learned features are computed at steps 2,3,4 and
5 incorporating X into Eq. 1 for varying kernel sizes with designated padding
strategy. Drawing inspiration from the idea of incorporating kernels (convolu-
tional windows) of different sizes to enhance the extraction of local features from
different spatial ranges [29], we propose a decoupled ensemble structure for our
convolutional module. In our design, we stack convolutional layers with kernel
sizes of 3, 5, 7, and 11, allowing our model to learn sub-patterns using various
receptive field sizes in separate blocks. These small kernel sizes were adopted on
the basis of their proven computational efficiency in prior state-of-the-art CNN
models [29], as well as their effectiveness in capturing local features in complex
computer vision problems. The final choice of kernel sizes was also determined
from randomized parameter tuning. Additionally, padding plays a critical role
in the design of CNNs as it ensures the preservation of spatial dimensions in
input sequences. By retaining spatial information, padding enables CNNs to
process time series alike sequences with varying lengths consistently. For the
convolutional layers, we use ’causal’ padding. This type of padding strategy
adds zeros at the start of the input sequence after each convolution operation.
Importantly, this maintains the temporal sequence order, ensuring that outputt
does not depend on inputt+1 to inputt+n [23].

Deep Global Features. Gated Recurrent Unit (GRU), one type of Recurrent
Neural Network (RNN), has emerged as a powerful deep learning technique for
capturing overall long temporal dependencies or global patterns in sequential
data for challenges like time series classification [8,32]. Though GRU possesses
a simpler architecture with fewer gates and parameters to train, it still excels at
capturing both short-term and long-term dependencies in sequential data com-
pared to Long Short-Term Memory (LSTM) [32]. These unique traits make it
computationally more efficient and potentially better suited for our IoT Sen-
sor data classification challenge. A GRU unit maintains a gating mechanism
incorporating an Update Gate (ut) and Reset Gate (rt) based strategy to selec-
tively update and reset its internal state for capturing long-term dependencies
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and global facets or features of sequence data along with solving the vanishing
gradient problem. Mathematically,

ut = σ(Wu � xt + Uz � ht−1 + bu) (2)
rt = σ(Wr � xt + Ur � ht−1 + br) (3)

Here, t denotes the timestamp, xt, and ht−1 accordingly denotes the input
in the current timestamp and hidden state in the previous timestamp. W , U
and b are respective weight matrices and vectors for update and reset gates. To
better capture the global sequential patterns of IoT sensor data, we develop
a stacked Bi-directional GRU module for integration into our deep learning
model. Bi-directional means capturing the patterns of the sequence data from
both directions (forward and backward) to allow it to learn temporal dependen-
cies and patterns that exist in both past and future contexts. A single block
of bi-directional GRU unit, incorporated into our deep learning model can be
represented mathematically as;

grui = Bidirectional(GRU(X,D)) (4)

Here, X represents a vector containing input sequences such as [X0,X1, ......,Xt],
distributed over t timestamps, and D represents dimensions of output repre-
sentation space computed by the GRU function. grui is the output sequence
returned by one Bidircetional function that concatenates the computed output
features by the GRU function from both the forward and backward direction in
an appending manner. As described in Fig. 1 and Algorithm 1, for deep global
sequential feature extraction we stack 3 Bi-directional GRU units accompanied
by Batch Normalization after each unit. The hyperparameter setting of param-
eter D for each unit is accordingly 128, 128, and 64 in steps 7, 8, and 9 for
Algorithm 1 with the incorporation of Eq. 4 for computation of global patterns
at each epoch for every sample in X.

Combined Deep Learning Model. To improve the classification performance
on challenging IoT data, as delineated in Algorithm1, we propose a novel deep
learning model that incorporates deep learning-based local features by our cus-
tomized CNN and global features by our Bi-directional GRU. As depicted in
Algorithm 1, the learned feature space at every epoch from both of these net-
works is concatenated through a concatenation layer in step 10 (Algorithm1)
and fed into an MLP Head (Multi-layer perception-based fully-connected layer)
in step 11 (Algorithm 1) which consists of a stack of dense feed-forward layers
accompanied by layer-normalization after each dense linear projection layer. The
stack of dense linear projection layers follows a bottleneck design (accordingly
1024, 512, 256 and 64) in terms of the number of neurons in each layer inspired by
the previous state-of-the-art architectures [12]. The key motivation for this type
of design is to reduce the number of parameters in subsequent layers to force the
network to learn more compact representations that eventually improve general-
ization reducing the chance of overfitting [12]. The number of Epochs was set to
200 using ADAM (Adaptive Moment Estimation) optimizer with a learning rate
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of 0.001. The weights of the best epoch on the validation stage were considered
for the best model.

Algorithm 1. DeepHeteroIoT: Our Proposed Deep Learning Model
Input: X: 2-D matrix that contains N number of individual sequences represented

as xi where IoT Sensor data sequences is distributed of t time-stamps. X = [xi, xi+1, ...
, xi+N ]. Each xi contains a sequence of data points representing IoT sensor readings..
Every xi in X feeds as input to the neural network over the epochs into individual
steps.

1: for Each epoch in Epochs do
2: F3 = ConvBlock(X, 3, ”causal”)
3: F5 = ConvBlock(X, 5, ”causal”)
4: F7 = ConvBlock(X, 7, ”causal”)
5: F11 = ConvBlock(X, 11, ”causal”)
6: Concatenate F3, F5, F7, F11 in an appending manner which generates a vector

concatlocal, containing a matrix of local features.
7: gru1 = Bidirectional(GRU(X, 128))
8: gru2 = Bidirectional(GRU(gru1, 64))
9: gru3 = Bidirectional(GRU(gru2, 64))

10: Concatenate extracted local feature (concatlocal) and global features (gru3) in
an appending manner.

11: Feed the concatenated feature space into the MLP Head.
12: Compute softmax predictions.
13: Compute loss of training epoch.
14: Update weights of each layer based on the learning rate.
15: end for

Output: O: predicted class labels defining IoT sensor data

4 Experiments

In this section, we outline the outcomes of our model’s experiments using
benchmark IoT datasets [21,22]. To evaluate the efficacy of our novel deep
learning model, we contrasted its Accuracy and F1 scores with conventional
machine learning and deep learning models. We also compared it to time series
classification-centric deep learning models like InceptionTime [15] and TapNet
[34]. Furthermore, we conducted a comparison between our model and a con-
temporary state-of-the-art ensemble machine learning model known as MACE
(as presented in [21]), which was explicitly tailored for classifying IoT data in a
prior research endeavor. We omitted comparisons with feature-transformation or
data-mining oriented methodologies [2] for classifying IoT sensor data. Because,
these techniques rely on statistical transformations of IoT sequence data and
our study emphasizes a comprehensive exploration of the capabilities of ML and
DL methods in capturing heterogeneous patterns within IoT sequence data at a
more granular level [14]. To ensure a consistent comparison within our domain
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and alignment with the methodology in the prior study [21], we adopted the
identical experimental design, including the division of datasets into training
and testing subsets. We performed a stratified split over the datasets assigning
70 % to the training set and 30 % to the testing using the Scikit-Learn library
by setting parameter value “random state=100”. The tested classifiers in this
paper are implemented in Python 3.9.16 on top of Scikit-Learn for machine
learning models (except XGBoost) and Tensorflow for deep learning models. For
XGBoost, we utilize the Python implementation of the XGBoost algorithm. All
the experiments were conducted on a Linux server running Ubuntu 20.04 LTS as
the OS, equipped with a 24-core Intel CPU (x86 64) and 128 GiB of RAM. In our
work, we include the Swiss Experiment dataset and Urban Observatory dataset
from MACE [21] paper. We exclude the ThingSpeak dataset which was included
in the MACE [21] paper as this dataset contains textual meta-data describing
IoT sensors which do not go with the motivation of this study of dealing with
IoT sensor classification challenge utilizing only raw numeric sensor observa-
tions. Additionally, to validate the generalizability of our proposed solution, we
constructed another dataset named IOWA ASOS, inspired by a recent study [2]
which will be discussed in detail in the remaining sections.

4.1 IoT Sensor Datasets

In this section, we delineate the three benchmark IoT Sensor datasets that have
been utilized in this study including the IOWA ASOS dataset that we have
developed specifically for this paper to prove the generalizability of our model
performance along with Urban Observatory (UrbObs) and Swiss Experiment
(Swiss) datasets from previous studies [4,21].

– IOWA ASOS (IOWA). Inspired by the study of [2], we developed this
IoT sensor dataset by collecting sensor data of various meteorological sensors
from the data archive of Iowa Environmental Mesonet (IEM) prepared by the
IOWA State University and made available via API and web interface2 This
dataset contains sensor data from meteorological sensors at airports using
Automated Surface Observing Systems (ASOS)3 These sensors can produce
observations every minute or every hour based on the requirements of the
airport authority to corroborate aviation operations by using weather fore-
casting reports. To make our own version of the new IoT dataset for this study,
we collect data with 1-h intervals over a 6-month time-span from 5 different
stations in the IOWA state of the United States. To make this dataset suit-
able for an IoT Sensor data classification challenge, we include 1-week data
at 1-h intervals for each individual classification sample. The dataset contains
8 class labels and these are: Air Temperature, Dew Point Temperature, Rel-
ative Humidity, Wind Direction, Pressure Altimeter, Visibility, Wind Gust,

2 Iowa Environmental Mesonet ASOS-METAR Data Download: https://mesonet.
agron.iastate.edu/ASOS/.

3 Automated Surface Observing Systems from the U.S. National Weather Service:
https://www.weather.gov/asos/asostech..
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and Apparent Temperature (Heat Index). The missing values are imputed by
the standard imputation strategy [2] of replacing by global average (mean)
on that time-stamp across the individual class labels.

– Urban Observatory (UrbObs). The version of this dataset we utilized for
our experimentation was developed in a previous study [21] of IoT sensor data
classification. We have incorporated the exact same version of this dataset to
make our experimental results comparable to the literature. This dataset
contains sensor data generated through an innovative initiative4 spearheaded
by the University of Newcastle. The program aims to establish an urban sensor
network in Newcastle, United Kingdom (UK) and provides publicly accessible
real-time environmental data [16]. The dataset has 16 different class labels
including NO2 (Nitrogen Dioxide), Wind Direction, Humidity, Wind Speed,
Temperature, Pressure, Wind Gust, Rainfall, Soil Moisture, Average Speed,
Congestion, Traffic Flow, Journey time, Sound, CO (Carbon Monoxide) and
NO (Nitrogen Monoxide). This dataset contains highly correlated IoT data,
primarily due to its city-wide scope and originating from a single source [21].

– Swiss Experiment (Swiss). This dataset is one of the few extremely noisy
and heterogeneous IoT datasets that consist of data from various microscopic
locations in various time-stamps within the Swiss Alps Mountain range [4].
This dataset contains data from sensors having a diverse range of sampling
rates making the phase-shift of data series very significant [4,21]. Following
the exact same version of this dataset from the previous study [21], we cut
each time series data to the length of the shortest stream as the original data
contains data of slightly different lengths. It includes class labels such as CO2

(Carbon Dioxide), Humidity, Lysimeter, Moisture, Pressure, Radiation, Snow
Height, Temperature, Voltage, Wind Speed, and Wind Direction.

Table 1. Summary of IoT Datasets

Dataset Length Duration Samples Labels

Urban Observatory 864 1 day 1065 16

Swiss Experiment 445 Variable 346 11

IOWA ASOS 168 1 week 1000 8

Table 1 provides a summary of 3 IoT datasets highlighting time series
sequence length, duration of record per sample, the total number of samples,
and the total number of class labels for each dataset. Out of these three IoT
datasets, the Swiss Experiment dataset exhibits a notable class imbalance and
has a very limited number of training samples, making it a particularly chal-
lenging dataset for deep learning methods. On the other hand, the IOWA ASOS
dataset is almost completely balanced where each class has almost the same
amount of data samples. The Urban Observatory exhibits some degree of class
4 Urban Observatory Environment Program: http://newcastle.urbanobservatory.ac.

uk/.
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imbalance, but due to the presence of less noisy IoT sensor data, the imbalance
issue does not pose a major problem for this dataset [21]. In the Swiss Exper-
iment, the majority class has 78 samples, while the minority class has only 14
samples in total.

4.2 Experimental Results

In this section, a detailed representation of experimental results along with a
rigorous comparison against baseline machine learning and deep learning models
have been delineated. Also, performance comparison with previous state-of-the-
art models across 3 datasets is presented and validated.

Evaluation Metrics. Before starting, we describe the evaluation metrics that
have been computed and compared throughout the experimental validation stage
for our proposed model and all other experiments. These are:

– Accuracy: It indicates the percentage of IoT Sensor data that have been
classified correctly by our model out of total data samples.

– F1-Score: It is a harmonic mean of Precision and Recall which gives us a
balanced perception of our model’s performance and helps to validate DL
model’s effectiveness properly.

For the evaluation of each experiment, we focus on the Accuracy and weighted
average F1-Score throughout the study. Later, we computed the macro-average
F1 Score for comparison of the model’s effectiveness with a previous state-of-the-
art study [21]. The weighted average F1 Score is a more suitable way to compute
F1-Scores for scenarios where the class imbalance is present to find the dataset.
On the other, the macro average F1-Score does not take into account that class
imbalance is present in the dataset.

Ablation Studies. To validate the efficacy of our proposed combination of
global and local deep learning-based learned patterns for IoT sequence data, we
illustrate a detailed ablation analysis of our proposed model in Table 2 with
Accuracy scores and weighted average F-1 scores across three different IoT
datasets. From the results of Table 2, it is clearly visible that our proposed
novel deep-learning model outperforms individual components including only
global features, only local features, and only MLP Head (without any deep fea-
ture extraction) based classifiers with a high margin. However, out of individual
components, classification with only global features dominates compared to com-
binations with only local features and only MLP Head across 3 datasets.

It is also noticeable that only MLP Head performs badly, indicating the
importance of deep-learning-based feature extraction before training a fully-
connected network-based classifier for the classification of heterogeneous IoT
sensor data. If we draw attention to the accuracy scores presented in Table 2,
we can notice that our proposed deep learning model outperforms the second-
best combination in Table 2 by 3.75%, 6.73% and 1.68% accordingly on Urban
Observatory, Swiss Experiment and IOWA ASOS datasets. Similarly, in terms
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Table 2. Ablation study of our proposed deep learning model across IoT datasets

UrbObs

(Accu-

racy)

UrbObs

(F1-Score)

Swiss

(Accu-

racy)

Swiss

(F1-Score)

IOWA

(Accuracy)

IOWA

(F1-Score)

Global Features 90.63% 89.92% 79.81% 78.5% 94.33% 94.32%

Local Features 88.13% 87.72% 77.88% 76.41% 87.33% 87.50%

MLP Head 77.51% 76.02% 45.19% 42.04% 86.01% 85.80%

DeepHeteroIoT 94.38% 94.27% 86.54% 85.12% 96.01% 95.93%

of weighted average F1-score our proposed model outperforms by 4.35%, 6.62%,
and 1.61%. The outperforming scores achieved by our proposed model justify
the importance of learning both global and local deep learning-based patterns
of IoT sequence data within one combined and end-to-end learning model. As
IoT sensor data is heterogeneous, the proposed combination of both local and
global learnable deep neural network architecture is a more suitable approach to
capture different dynamic facets of IoT sensor data.

Out of the 3 IoT datasets, as described earlier, the Swiss Experiment dataset
is highly heterogeneous with a very limited number of available samples includ-
ing class imbalance issues. In such scenarios, intricate deep-learning architecture
like ours tends to suffer from non-convergence issues and poor training general-
izability due to data scarcity issues. For this, only the Swiss Experiment dataset
was pre-processed in the training stage by incorporating the time series data-
augmentation method followed by oversampling by B-SMOTE [11]. Through-
out our evaluation process, we also conducted experiments involving the data
augmentation module on the other two datasets. However, since these datasets
had a sufficient number of samples and exhibited either fewer or no significant
class imbalance issues in their original training data, it was obvious that the
improvements in accuracy and f1-scores were not as substantial in comparison
to the Swiss Experiment dataset after applying data augmentations. And so, for
later experimental results only for the Swiss Experiment dataset, we present the
results that have been achieved by our model after incorporating the augmented
training data. An illustrated representation of the learning curves delineating
Accuracy per epoch for the training phase of our proposed deep learning model
is outlined in Fig. 2. The learning curves (Fig. 2) certainly validate the train-
ing efficacy and robust learning capacity of our proposed model across 3 IoT
datasets.

Comparison of Performance Against Other Models. In this stage, we
compared our novel DL approach with traditional baseline ML models, includ-
ing K Nearest Neighbor (KNN), Logistic Regression (LR), Random Forest (RF),
Gradient Boosting (GB), Extreme Gradient Boosting (XgBoost), and Support
Vector Machine (SVM). To ensure baseline settings for the machine learning
algorithms that have been used from Scikit-learn’s package, default parameter
settings for every algorithm are utilized. For our baseline setting of DL models
such baseline RNN and baseline CNN, we accordingly incorporate the Simple
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Fig. 2. Learning-curve representation for training and validation (per-epoch) for our
proposed model across 3 datasets

RNN API5 from Tensorflow with a filter size of 32 and Conv1D API6 by Tensor-
flow and follow the traditional example7 of stacking Convolutional units (3 by
1 kernel sizes and “relu” with no padding) followed by a MaxPooling layer. For
time series DL models such as InceptionTime [15] and TapNet [34], the sktime
implementation was utilized8. We trained all the DL models for 200 epochs.

Table 3, depicts a rigorous comparison of our DeepHeteroIoT model against
baseline ML and DL methods in terms of accuracy and weighted average F1-
Score across 3 IoT datasets. Among all machine learning classifiers, only ensem-
ble tree-based models, such as RF, GB, and XgBoost, seem to achieve com-
petitive performance against our proposed deep learning model. Non-tree-based
classifiers, such as LR, SVC, and KNN, demonstrate comparatively poor perfor-
mance across all three datasets. Traditional CNN outperforms traditional RNN
in UrbObs and IOWA datasets but lags behind in terms of the Swiss dataset.
Notably, the popular InceptionTime model [15] exhibited very poor performance
with a lower accuracy of 29.81% and an F1-score of 20.15% on the Swiss dataset.
Another such model, TapNet [34], also failed to outperform the tree-based ensem-
ble ML classifiers. The results shed light on the ineffectiveness of traditional
time-series classifiers and traditional DL and ML models in heterogeneous IoT
sensor scenarios, as discussed earlier in the literature review. Whereas, the poten-
tial of ensemble tree-based ML models is worth highlighting for their effective
classification in heterogeneous IoT sensor scenarios. From the results, it is appar-
ent that DeepHeteroIoT outperforms every learning-based baseline classifier by
a significant margin, that is, achieving a greater average accuracy by absolute
9.29% and F1-score by 10.07 % across 3 datasets compared to the second-best
performing models. Furthermore, RF emerged as the second-best model for both
the Swiss and IOWA datasets, while GB outperformed RF by a slight margin
on the UrbObs dataset.

5 https://www.tensorflow.org/api docs/python/tf/keras/layers/SimpleRNN.
6 https://www.tensorflow.org/api docs/python/tf/keras/layers/Conv1D.
7 https://www.tensorflow.org/tutorials/images/cnn.
8 https://www.sktime.net/en/latest/api reference/classification.html.
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Table 3. Comparison of performance against state-of-the-art baseline machine learning
and deep learning models across 3 IoT datasets. The best results are in bold and the
second best are underlined.

UrbObs

(Accuracy)

UrbObs

(F1-Score)

Swiss

(Accuracy)

Swiss

(F1-Score)

IOWA

(Accu-

racy)

IOWA

(F1-Score)

CNN 78.13% 77.71% 47.11% 41.11% 83.01% 82.43%

RNN 50.31% 42.87% 58.65% 51.11% 65.01% 62.27%

InceptionTime [15] 64.98% 53.80% 29.81% 20.15% 87.98% 87.99%

TapNet [34] 53.44% 48.36% 42.31% 33.45% 55.68% 54.52%

LR 55.63% 51.75% 23.08% 15.52% 53.01% 50.41%

KNN 77.19% 73.78% 55.77% 52.36% 75.34% 74.18%

SVC 55.63% 47.98% 45.19% 33.85% 55.67% 46.95%

RF 86.56% 86.63% 73.07% 70.49% 92.00% 91.84%

GB 86.87% 86.74% 65.39% 64.53% 91.33% 91.35%

XgBoost 85.63% 85.27% 64.42% 65.36% 90.68% 90.63%

DeepHeteroIoT 94.38% 94.27% 89.42% 89.07% 96.01% 95.93%

Table 4. Comparison of performance across 3 IoT datasets with previous state-of-the-
art study in IoT sensor data classification domain

UrbObs

(Accuracy)

UrbObs

(macro

F1-Score)

Swiss

(Accu-

racy)

Swiss

(macro

F1-Score)

IOWA

(Accu-

racy)

IOWA

(macro

F1-Score)

MACE (Top-k) 90.6% 87.9% 84.6% 83.2% 87.33% 87.40%

MACE (PF) 90.6% 87.9% 83.2% 83.2% 87.33% 87.40%

MACE (SoF) 90.6% 87.9% 82.7% 80.0% 90.33% 90.48%

MACE (brute-force) 92.2 % 88.7% 86.5% 84.0% 91.01% 91.04%

DeepHeteroIoT 94.38 % 92.01% 89.42% 87.34% 96.01% 95.93%

Additionally, the accuracy scores and macro-average F1-scores provided
in Table 4 unequivocally demonstrate that DeepHeteroIoT consistently out-
performs all alternative combinations involving the previous state-of-the-art
machine learning model, MACE [21], across all datasets. Our model eventually
outperforms MACE [21] by absolute 2.18 %, 2.92 %, 5 %, in accuracy and 3.31
%, 3.34 %, 4.89 % in macro-average F1-score on the respective Urban Obser-
vatory, Swiss Experiment, and IOWA ASOS datasets. It is worth noting that
MACE employs an ensemble method alongside a brute-force strategy, which
leads to considerable computational costs and undermines its scalability. On the
other hand, our proposed deep learning model is a complete end-to-end solution
which makes it scalable to the increase of dataset or problem size. For instance,
the brute-force approach proposed in the MACE paper [21] took about 2 h and
17 min to train and build on the smallest dataset (Swiss), while our proposed
deep learning model only required approximately 23 min and 55 s. Moreover, pre-
vious studies employing ensemble machine learning techniques [21,22] did not
incorporate the learning of heterogeneous patterns from IoT sensor data during
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the training phase. Our proposed deep learning architecture fills this gap by
enabling end-to-end learning of complex contextual patterns in challenging IoT
sensor data sequences.

5 Conclusion

In this study, we proposed a novel deep learning model that integrates learnable
local features using CNN and global features using Bi-GRU in one end-to-end
network, leading to significantly improved classification of heterogeneous IoT
sensor data. Through rigorous experiments across three IoT datasets, we val-
idated that our proposed deep learning model not only outperforms baseline
machine learning and deep learning methods but also achieves state-of-the-art
performance in classifying heterogeneous IoT sensor data. In the future, we would
like to extend our model to multi-modal IoT datasets that occur from a diverse
range of mobile computing environments.
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