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A B S T R A C T   

Breast cancer has become a symbol of tremendous concern in the modern world, as it is one of the major causes 
of cancer mortality worldwide. In this regard, breast ultrasonography images are frequently utilized by doctors to 
diagnose breast cancer at an early stage. However, the complex artifacts and heavily noised breast ultrasonog-
raphy images make diagnosis a great challenge. Furthermore, the ever-increasing number of patients being 
screened for breast cancer necessitates the use of automated end-to-end technology for highly accurate diagnosis 
at a low cost and in a short time. In this concern, to develop an end-to-end integrated pipeline for breast ul-
trasonography image classification, we conducted an exhaustive analysis of image preprocessing methods such as 
K Means++ and SLIC, as well as four transfer learning models such as VGG16, VGG19, DenseNet121, and 
ResNet50. With a Dice-coefficient score of 63.4 in the segmentation stage and accuracy and an F1-Score (Benign) 
of 73.72 percent and 78.92 percent in the classification stage, the combination of SLIC, UNET, and VGG16 
outperformed all other integrated combinations. Finally, we have proposed an end to end integrated automated 
pipelining framework which includes preprocessing with SLIC to capture super-pixel features from the complex 
artifact of ultrasonography images, complementing semantic segmentation with modified U-Net, leading to 
breast tumor classification using a transfer learning approach with a pre-trained VGG16 and a densely connected 
neural network. The proposed automated pipeline can be effectively implemented to assist medical practitioners 
in making more accurate and timely diagnoses of breast cancer.   

1. Introduction 

Cancer, a term that has been continuously threatening humans for 
decades, is a disease in which cells in one place of the body proliferate 
and replicate uncontrollably. The cells affected by cancer can penetrate 
and kill other healthy cells in the human body. It is generally engendered 
in one part of the human body, and via a process called metastasis, it can 
spread all over the human body [47]. Breast Cancer is one of the most 
frequent types of cancer that has a negative impact on the lives of 
women of all ages all over the world [46]. According to reports, a 
woman in the United States has a 13% chance of acquiring breast cancer 
at some point in her life [11]. Breast cancer is estimated to kill 43,600 
people in the United States in 2021. Breast Cancer may affect males as 
well as women. In 2021, around 2,650 new instances of invasive breast 
cancer in males are predicted to be diagnosed. A man’s lifetime chance 
of developing breast cancer is around 1 in 833 [10]. Breast cancer risk 
factors include advancing age, obesity, heavy alcohol use, a family 

history of breast cancer, a history of radiation exposure, a reproductive 
history, cigarette use, and postmenopausal hormone treatment [72]. 
However, according to the World Health Organization (WHO), half of all 
breast cancers occur in women who have no recognized risk factors for 
the disease other than being female and being above the age of 40. 

Early detection of breast cancer is very crucial for saving humans in 
today’s world. Doctors typically recommend a breast ultrasonography 
test to determine whether or not a person has a breast tumor. Generally, 
breast tumors are of two types: malignant (cancerous cells) and benign 
(non-cancerous cells). Malignant and benign tumors have distinct 
morphology in terms of form and texture. As a result, doctors can 
generally discover the kind or existence of breast cancer by analyzing 
the tumor’s appearance. However, the number of people getting 
screened for breast cancer is steadily growing. With manual reporting, 
medical practitioners are facing a great challenge to diagnose this large 
number of patients. As a consequence, medical practitioners urgently 
require the automation of the process of detecting breast cancer by 
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reviewing test data such as breast ultrasonography images. 
This scenario has piqued the interest of artificial intelligence (AI) 

experts, and so AI researchers have committed themselves to investigate 
the potential capabilities of state-of-the-art machine learning and deep 
learning approaches for automatically diagnosing breast cancer [42]. In 
recent, Artificial Intelligence (AI) based methods evinced great potential 
capability of detecting breast cancer with high accuracy [51]. However, 
medical image processing and analysis with computerized technologies 
is great challenge for the researchers from industry and academia [59]. 
And, a series of extensive image processing and computer vision 
methods is often incorporated for successfully processing medical im-
ages like breast ultrsonography image, to extract meaningful informa-
tion from that ultrasonography image [54]. Artificial Intelligence 
researchers have developed several state of the art pre-processing 
methods adopting the biomedical imaging domain to tackle chal-
lenging artifacts of biomedical images over the years [6]. Also, deep 
learning based image segmentation for medical images have been 
rigorous investigated by AI researchers to complement the detection of 
malignant tumor cells [22]. In particular, breast ultrasonography images 
are highly noised and posses a complex artifact which requires extensive 
pre-processing before performing deep learning based segmentation 
tasks [13]. Several researchers have developed and incorporated state of 
the art image segmentation methods for breast tumor segmentation from 
raw breast ultrasonography images [58,36]. Though the developed 
segmentation methods are quite useful for breast cancer detection from 
breast ultrasonography images, only segmentation of breast tumor area 
or shape from raw breast ultrasonography images does not directly 
determine breast cancer malignancy. For this, a number of AI re-
searchers again developed deep learning based individual modules to 
classify breast cancer from raw breast ultrasound images [52]. However, 
due to the complex artifacts of breast ultrasonography images, using 
deep learning methods directly to raw ultrasonography images appears 
to be insufficient. Furthermore, previous studies has addressed the issue 
by designing modules to improve a particular aspect of the overall breast 
cancer diagnosis process based on ultrasound images. As a result, these 
frameworks do not provide a fully integrated pipeline that encompasses 
preprocessing, segmentation, and classification in a single framework. 
And so, there is a considerable barrier to the adoption of these frame-
works for industrial-level applications [71]. 

A significant research question emerges at this moment, which is 
“RQ: Can we fully automate the process of detecting breast cancer from ul-
trasonography images employing suitable deep learning modules in an inte-
grated way ready for adoption in industry-based medical applications?”. To 
answer the aforementioned research question, we effectively used the 
breast cancer research domain throughout this study and investigated 
the prospective capability of cutting-edge image processing and deep 
learning modules when combined in a single end-to-end pipeline. The 
main contributions of this study are:  

• We proposed a computer aided deep integrated pipeline of breast 
ultrasound image segmentation leading to classification for breast 
cancer diagnosis at an early stage in low cost.  

• Explored the challenges of processing and analyzing highly noised 
Breast Ultrasonography images through state of the machine 
learning and deep learning methods.  

• Integration of Simple Linear Iterative (SLIC) based unsupervised 
image segmentation as part of preprocessing to support semantic 
segmentation by Modified U-Net. 

• Rigorous analysis of performance and election of best suited pre-
trained image classification model for integration into our proposed 
deep integrated model as part of feature extraction in the classifi-
cation module adopting the domain of medical imaging. 

The remainder of this paper is structured as follows. Section 2 contains 
information on the related works. Section 3 introduces the complete 
methodology including all material and methods which have been 

utilized in this study. Section 4 contains a rigorous performance analysis 
of our proposed and experimented integrated deep learning frameworks. 
Section 5 contains discussion of the research findings. Finally, Section 6 
highlights the major conclusions and future work. 

2. Literature Review 

In this section, we briefly discuss the previous state of the art studies 
on breast cancer diagnosis utilizing artificial intelligence based method 
followed by highlighting the necessity and novelty of our proposed in-
tegrated framework in the domain of breast cancer. 

Due to the immense potential of analyzing complex and sensitive 
data-intensive problems, machine learning and deep learning algo-
rithms have been widely used in several medical applications to tackle 
challenging medical conditions in recent [62]. Wang et al. [69] pro-
posed a random forest based multi-objective rule extraction method for 
diagnosing Breast Cancer by utilizing Wisconsin breast cancer datasets. 
Inan et al. [29] proposed a hybrid machine learning based method, 
integrating probabilistic predictions from individual machine learning 
models with Extreme Gradient Boosting (XgBoost). Islam et al. [30] 
explored the potential of several machine learning algorithms and 
artificial neural network for breast cancer prediction. Ghosh et al. [19] 
found in their study that RNN (Recurrent Neural Network) based deep 
learning architectures, the LSTM (Long Short Term Memory) and Gated 
Recurrent Unit (GRU) outperformed in the diagnosis of breast cancer. 
Furthermore, several other artificial intelligence based researchers have 
performed extensive studies for prediction of breast cancer by incorpo-
rating state of the art machine learning methods [3,73]. 

Medical imaging plays significant role of diagnosis of sensitive 
medical conditions. Deep learning-based algorithms have recently been 
incorporated into medical imaging by AI researchers in order to solve 
sensitive medical situations effectively and frequently [61,34]. Breast 
Ultrasonography, Histopathology, and MRI are some of the diagnostic 
tests that doctors use to diagnose breast cancer at an early stage. Breast 
Ultrasonography is the most commonly recommended test by doctors 
for the early diagnosis of breast cancer. However, machine learning 
based methods are not sufficient enough to process complex medical 
images to diagnose Breast Cancer with high efficiency. Deep Learning 
based methods can corroborate the study of medical images to detect 
cancers including Breast Cancer. In this regard, deep learning algorithms 
have been employed to process biomedical image data to detect Breast 
Cancer in several studies. Toğaçar et al. [68] developed a Convolutional 
Neural Network (CNN) model to diagnose Breast Cancer from Histopa-
thology images of Breast Tissue obtained through fine needle aspiration. 
A residual net (ResNet) based model of 152 layers have been proposed 
by Gour et al. [20] to classify Breast Histopathology Images. Hybrid 
combination of Convolutional Neural Networks (CNN), Ridge Regres-
sion and Linear Discriminant Analsis have been incorporated by Toğaçar 
et al. [67] to diagnose Breast Cancer from Histopathological Images of 
Breast Tissues with integrated autoencoders for pre-processing. A Mul-
tiparametric Magnetic Resonance Imaging (mpMRI) based Breast Can-
cer diagnosing with the incorporation of deep learning methods have 
been studied by a group of researchers [26]. Rasti et al. [53] imple-
mented a framework that ensemble convolutional neural network to 
support computer aided diagnosis of Breast Cancer from breast dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI). Gao et al. 
[18] utilized the combination of state of the are deep CNN (Convolu-
tional Neural Network) as a feature generator and Shallow CNN for 
synthesizing contrast-enhanced digital mammography (CEDM) to sup-
port the diagnosis of Breast Cancer.However, MRI (Magnetic Image 
Resonance) based diagnosis are costly and time consuming [63,57]. 

For this, medical practitioners mostly prescribe Breast Ultrasound 
Test for an early and rapid diagnosis of Breast Cancer. In this regard, 
artificial intelligence researcher have extensive working with Breast 
Ultrasonography images involving both segmentation and classification 
tasks for early diagnosis of Breast Cancer. Integration of pre-trained state 
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of art Conovlutional Neural Networks have been proposed by Masud 
et al. [41] for the classification of Breast Cancer from Breast Ultraso-
nography images. Breast Ultrasonogrphy images are highly noised and 
contains a very complex artifact which makes it tougher for the deep 
learning and machine learning methods to learn the precise morphology 
of breast tumors to support the diagnosis process [37,48,66]. In this 
regard, noise removal of Breast Ultrasound Images to support an effec-
tive detection of Breast Cancer using deep convolutional neural net-
works have been proposed by Latif et al. [38]. Hijab et al. [23] 
integrated pretrained image classification models utilizing the concept 
of transfer learning for an effective classification of Breast Cancer from 
Breast Ultrasound Images. To improve the performance of Breast Cancer 
diagnosis from image data researchers also have taken multi modal 
approach combining Mammography images with Ultrasound Images 
with a selective ensemble classification methods [14]. 

Semantic segmentation is conducted by researchers to extract region 
of interest from medical images to capture the shape and texture of 
tumor or infected area for diagnostic purpose [50,49]. Moreover, seg-
mentation of Breast Ultrasound Images is a very crucial and challenging 
problems which supports the diagnosis of Breast Cancer in a very 
effective manner. Lee et al. [39] have proposed a state of the art channel 
attention module with multi-scale grid average pooling for Ultrasound 
Image Segmentation of Breasts. Almajalid et al. [5] developed a U-Net 
based deep learning architecture for the segmentation of of Breast Ul-
trasonography images. Several other machine learning and deep 
learning researchers have extensively studied integration of computer 
aided automated artificial intelligence technologies for Breast Ultra-
sound Image Segmentation [28,75,7]. 

However, according to our research no study have proposed a fully 
automated and compact deep integrated pipeline which includes seg-
mentation leading to classification of Breast Cancer from Breast Ultra-
sound Images. In this study, we have adopted the Breast Cancer domain 
at every stage of our research framework and handled the challenging 
artifacts, high noise, inter class similarities of Breast Ultrasonography 
Images by developing an efficient fully automated deep integrated 
pipeline which can be adopted to support the medical practitioners in 
the diagnostic process of Breast Cancer in a more effective and faster 
way. The proposed integrated end to end compact deep learning pipe-
line is highly efficient compact solution for the adoption in the medicals 
and cancer research domain. 

3. Material and Methods 

In this section, we briefly describe our proposed automated pipe-
lining framework followed by the approaches utilized in our proposed 
automated deep learning pipeline with illustrations of the individual 
components that make up the automated framework. At every stage of 
our research, we have successfully adopted the bio-medical domain with 
robustness and clarity. A graphical representation of the complete 
training pipeline of our proposed integrated model is depicted in Fig. 1. 

3.1. Proposed Automated Deep Learning Framework 

In this study, we proposed a fully automated end to end pipeline 
which includes pre-processing with SLIC (Simple Linear Iterative Clus-
tering), semantic segmentation with modified U-Net leading to classi-
fication of Breast Cancer with an integrated deep learning framework 
including pre-trained state-of-the-art feature extraction model. For the 
training stage, as delineated in the Training Algorithm1, the ultraso-
nography image of breasts have been pre-processed into 128x128x3 
pixels. Later, by using unsupervised image segmentation method SLIC 
(Simple Linear Iterative Clustering), the ultrasonography images are 
clustered into superpixels that provides a better representation for 
further semantic segmentation task. All the training images that have 
been clustered using SLIC is then feed to our modified U-Net architecture 
for semantic segmentation along with their correspoiding Ground Truth 

Masks.  
Algorithm1: Training Algorithm 

Input: R and M are set of vectors of containing numerical matrix representations of 
raw ultrasound images and Mask (Ground Truth) images accordingly. Y is set of 
vector containing image labels (class) for each image in R and M consecutively.  

1: for Each Ri in R do  
2: Apply scale transformation and convert it 128x128 pixels image. 
3: Perform unsupervised image segmentation. 
4: Normalize the image pixels. 
5: end for 
6: for Each Mi in M do  
7: Apply scale transformation and convert it 128x128 pixels image. 
8: Normalize the image pixels. 
9: end for 
10: Define the U-NET architecture for semantic segmentation. 
11: Initialize, Epoch to 1,  
12: while Epoch <= 300 do  
13: Set input data as R to predict M.  
14: Train the model on input data to perform Semantic Segmentation. 
15: Compute Loss. 
16: Update weights according to learning rate. 
17: Update Epoch by 1.  

(continued on next page) 

Fig. 1. Training Pipeline of Our Proposed Automated Deep 
Learning Framework. 
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(continued ) 

Algorithm1: Training Algorithm 

18: end while 
19: Define the classification model architecture. (Pre-trained Convnets for Feature 

Extraction followed by 5 Fully Connected Layers). 
20: Initialize, Epoch to 1,  
21: while Epoch <= 100 do  
22: Set input data as M to predict Y.  
23: Extract Features with Pre-trained models from training input data. 
24: Train the Fully Connected Layers by extracted features as input. 
25: Compute Binray Cross Entropy Loss 
26: Update weights of Fully Connected Layers according to learning rate. 
27: Update Epoch by 1.  
28: end while 

Result: Trained Segmentation Model and Classification Model.  

After training the modified U-Net for creating semantic segmentation 
of Breast Ultrasound Images to predict Masked Segmented Image, we 
trained our integrated classification model which contains pre-trained 
VGG 16 based feature extraction from Masked Breast Cancer Images 
to predict whether the Masked Image represent a Malignant Breast 
Cancer or not. The classification model was trained for 100 Epochs and 
best weights based lower validation loss was extracted for final 
modelling. 

At the end of training stage, our individual deep learning models for 
semantic segmentation of Breast Ultrasound Images and classification of 
Breast Cancer category is ready to utilize. In this context, we designed 
our proposed automated deep learning pipeline for breast ultrasound 
image classification which is presented in Algorithm2.  

Algorithm2: Automated Deep Learning Pipeline for Breast Ultrasound Image 
Classifications 

Input: X is set of vectors of containing numerical matrix representations of raw 
ultrasound images.  

1: Create a vector T for storing predicted mask images by segmentation model.  
2: for Each Xi in X do  
3: Apply scale transformation and convert it 128x128 pixels image. 
4: Perform unsupervised image segmentation. 
5: Normalize the image pixels. 
6: Predict the Segmented Mask image of the corresponding Xi by previously trained 

segmentation model and save it in the vector T.  
7: end for 
8: for Each Ti in T do  
9: Apply scale transformation and convert it 128x128x3 pixels image. 
10: Predict the classification label of the transformed image by the previously 

trained classification model. 
11: end for 

Output: Classification of Breast Cancer. (Benign/Malignant/Normal)  

The integrated deep learning pipeline proposed in this study, would 
take a 128x128x3 pixels Breast Ultrasonography Image as an input. The 
input image would be pre-processed using SLIC based unsupervised 
clustering. Then, using our trained modified U-Net model, a segmented 
masked image would be generated. The segmented masked followed by 
necessary preprocessing steps would be incorporated into our trained 
classification model which will predict the category of that Breast Tumor 
intro three classes including, Benign, Malignant and Normal. A simple 
graphical illustration of our fully automated prediction pipeline has 

been depicted in Fig. 2. It is clearly seen from the prediction pipeline of 
Fig. 2 that the pipeline just need the raw breast ultrasonography images, 
from that it can automatically generate masked images leading to final 
classification of Breast Cancer. 

3.2. Medical Image Segmentation 

Segmentation in medical imaging plays a critical role in the detec-
tion, localization, or identification of shapes of tumor cells. Cancer 
severity is determined by the morphology of the malignant cells, which 
may be determined using image classification algorithms using the 
shape of cancerous cells detected from image segmentation. The ne-
cessity of ultrasound image segmentation has been investigated by 
several researchers earlier [48,12,60]. In general, there are two types of 
image segmentation in a broader sense and is Unsupervised Segmenta-
tion which refers to segmentation without using labeled image pixels, 
and Semantic or Supervised Segmentation which refers to segmentation 
using labeled training images. In our study, we incorporated a hybrid 
integration of the Unsupervised and the Supervised image segmentation 
methods to successfully classify Breast Cancer from Breast Ultrasound 
Images. 

3.2.1. Unsupervised Segmentation 
In recent, unsupervised segmentation has been utilized for medical 

image segmentation in several state of art studies with great efficiency 
[2]. It is useful when the training data is not labeled for the segmentation 
task [9]. However, processing ultrasound images are very challenging 
due to their complex image artifacts [40]. In our study, we have 
experimented with two widely used unsupervised medical image seg-
mentation methods (K Means++ and SLIC) as a part of image pre- 
processing to ameliorate the efficiency of the semantic segmentation 
to generate segmented images of breast tumors. 

K-Means++

K Means++ is an unsupervised image segmentation algorithm that is 
an improved version of the popular K Means clustering algorithm [8]. In 
medical image processing and analysis, K Means clustering has been 
utilized to segment interest areas from the background for spotting out 
the location and shape of cancerous cells [45]. In K Means++, the in-
terest area representing a better view to locate and analyze cancerous 
cells is segmented by inducing clusters or partitions where similar pixels 
of images are grouped into a certain category through an iterative 
process. Here, K indicates the number of clusters to consider. This al-
gorithm is relatively fast, computationally less expensive, and can easily 
be adapted to new unseen data. The effect of incorporating the K 
Means++ algorithm for Breast Ultrasound Image Segmentation is 
illustrated in the Fig. 3. Here, Fig. 3a represents original ultrasound 
image of Breast for patient having Benign Tumor and Fig. 3b shows 
segmented image of that particular ultrasound image after incorporating 
K Means++ algorithm. 

In this study, we have utilized the OpenCV implementation in Python 
for K Means++ with a K -value of 4 and stopping criteria of if the 
maximum iterations are reached or specified epsilon/accuracy is 
reached. From the Figure, we can notice that the original ultrasound 

Fig. 2. Breast Cancer Diagnosis Framework From Breast Ultrasonic Image.  

M.S.K. Inan et al.                                                                                                                                                                                                                               



Biomedical Signal Processing and Control 75 (2022) 103553

5

image has been segmented into clusters where the image pixels are 
stretched to their nearest most significant pixel values with normaliza-
tion of 0 to 1. 

SLIC (Simple Linear Iterative Clustering) 
SLIC(Simple Linear Iterative Clustering) is a widely used clustering 

algorithm used for unsupervised image segmentation that clusters image 
pixels into nearly uniform superpixels [1]. A superpixel is a color-based 
segmentation that can be delineated as a set of pixels sharing similar 
characteristics. Many studies have used SLIC for image segmentation 
due to its simplicity and computational efficiency [74,25]. SLIC has been 
proved an efficient method for image segmentation to get meaningful 
insights from medical images including ultrasonography images 
[16,70]. In our study, for segmentation of Breast Tumor from Breast 
Ultrasound Images, we have integrated SLIC based image segmentation 
as part of pre-processing to support the performance of semantic seg-
mentation. The integration of SLIC may improve the non-linearity issue 
of ultrasound image pixel distribution by grouping pixels of similar 
characteristics. 

Here, the effect of SLIC based image segmentation is depicted in the 
Fig. 4. In Fig. 4b, after applying SLIC, the image pixels sharing similarity 
in distribution are assigned into a particular cluster making the image 
easy to process and analyze. In this study, for implementation purposes, 
the OpenCV library has been used with a configuration of region size 20 
of super-pixels, smoothing factor of 10 and 100 iterations per image. 

3.2.2. Semantic Segmentation: U-Net 
U-NET is a state-of-the-art deep architecture that was proposed 

especially in consideration of Biomedical Image segmentation [55]. It 
performs semantic or supervised segmentation. The U-Net model com-
prises an Encoder-Decoder architecture. The encoder is basically a 
contraction path that learns the context in the medical image utilizing 
stacked convolutional layers and pooling layers (max) followed by a 
decoder path with the functionality of symmetric expansion for the 
localization of tumor cells precisely utilizing transposed convolutions. 
The network contains only fully connected convolutional layers. 
Considering the accuracy and simplicity of this architecture, several 

researchers have incorporated variants of U-Net for a successful seg-
mentation and detection of biomedical images for the study of Breast 
Cancer [65,24,44]. In our study, we have incorporated a variant of 
UNET architecture for semantic segmentation of Breast Tumors Cells 
from Breast Ultrasonography images. Every block in the encoder section 
has two 3x3 Conv layers followed by 2x2 pooling(max) layers. At the 
end of encoder or contraction layers there lies two 3x3 Conv layers and 
2x2 Transposed Conv layer leading to decoder layers. The input image 
for UNET in this study is 128x128x3 (Width x Height x Channel) pixels. 
And the final segmented image is 128x128x1 pixels in dimensions. The 
Keras implementation of Tensorflow is utilized for experimental pur-
poses. In a standard U-Net, the number of convolutional blocks in the 
contraction and expansion path are equal. In our optimized UNET ar-
chitecture, we have used half the number of filters in every second 
convolutional layer than the first Conv layer each convolutional block of 
contraction path with a motivation of extracting the robust features by 
restricting the dimensions. Binary Cross Entropy function is incorpo-
rated for calculating loss in the training stage of the model and in the 
validation stage Dice-Coefficient score has also been computed for better 
justification of performance [31]. Mathematically, Binary Cross-Entropy 
Loss is can be computed as [56]; 

Logloss = −
1
N

∑N

i=1
yilog(p(yi))+ (1 − yi)log(p(yi)) (1)  

Here, yi denotes the ith actual pixel of Breast Ultrasonography Image 
and p(yi) predicted pixel value for that particular instance. And Dice- 
Coefficient Score can be computed as [43]; 

diceLoss =
2|A ∩ B|
|A| + |B|

(2)  

Dice Coefficient a popularly used evaluation metric for image segmen-
tation based tasks that measures overlap between two samples. |A ∩ B|
represents the common elements between sets A and B [32]. Eq. 1 is 
incorporated for the computation of loss at every epoch for our modified 
U-Net model. And, Eq. 2 is utilized to evaluate the performance of U-Net 

Fig. 3. Image Segmentation with K-Means++.  

Fig. 4. Image Segmentation with SLIC.  
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model at every epoch. 
A block diagram included with hyper parameters of modified U-Net 

model is illustrated in Fig. 5. In our proposed integrated pipeline, for 
modified U-Net model, each of the Conv Layers (Convolutional Layer) 
comprises of a kernel size 3x3, activation function ReLU (Rectified 
Linear Unit), ’he_uniform” as kernel initializer and ’same’ padding. 
However, the Transposed Convolutional Layers comprises of 2x2 kernel 
size and 2x2 strides each. The Adam optimizer function with a learning 
rate of 0.0001 is incorporated for optimizing the models performance 
after each epoch. The popular Tensorflow library for Python program-
ming language has been incorporated for implementation of the afore-
mentioned U-Net segmentation model. 

3.3. Tumor Classification 

In this section, we have briefly discussed deep learning models which 
have been included in the classification stage of breast cancer detection 
for experimentation purpose. To corroborate breast cancer classifica-
tion, we adopted pre-trained models utilizing the potential of transfer 
learning followed by densely connected fully connected layers. 

3.3.1. Transfer Learning: Feature Extraction with Pre-trained ConvNets 
Pretrained ConvNets (CNNs) are widely utilized state of the art deep 

learning models for tasks like Image Classification which have been 
already trained on the prestigious benchmark dataset ImageNet [15]. 
Pretrained ConvNets have immense potential of extracting robust fea-
tures from biomedical image data without being the need of training it 
on a unseen dataset [35]. In this study, for classifying Breast Tumor from 
Breast Ultrasonography Images we have experimented with state of the 
art pretrained ConvNet(CNN) for robust feature extraction by adopting 
the Biomedical domain. 

VGG 16 and VGG 19: VGG 16 and VGG 19 [64], are state of art deep 
ConvNet architecture which is trained on ImageNet Dataset [15] for 
image classification problem. The architecture of VGG 16 and VGG 19 is 
quite simple and lightweight because of having only small 3x3 conv 
filters. The 3x3 filters have been designed with the configuration of 
stride 1 and ’same’ padding. A maxpooling layer of 2x2 filters and stride 
2 is incorporated in each block after set of convolutional blocks. In our 
study, we have utilized the pre-trained version of VGG 16 and VGG 19 
for extracting features from Breast Ultrasonography Segmented Image at 

the classification stage. VGG 19 is nearly identical to VGG 16, except it 
has additional layers and a deeper architecture. VGG 19 contains addi-
tional parameters and Convolutational Layers than VGG 16. The VGG 
models is useful for object localization because to its tiny filter size- 
based design. This makes it a strong option for Breast Tumor local-
isation from Breast Ultrasonography pictures, which is critical for 
assessing Breast Tumor shape. In our study, the Convolutional Blocks of 
VGG 16 has been utilized to extract feature by pretrained weights. 

DenseNet121: DenseNet (Dense Convolutional Network) [27] is an 
architecture that focuses on deepening deep learning networks while 
also making them more cost-effective to train by using shorter connec-
tions between layers. The DenseNet architecture is designed to allow 
maximum information sharing between different network levels. Each 
layer receives “collective knowledge” from the levels above it. It requires 
fewer parameters than typical convolutional neural networks since it 
does not need to train irrelevant feature mappings. DenseNet features 
two crucial components in addition to the core convolutional and 
pooling layers. They’re referred to as Dense Blocks and Transition 
Layers. In this study, we experimented with pretrained DenseNet121, 
which includes 6,12,24,16 layers in the four dense blocks model, to 
extract robust features for Breast Cancer Detection from Breast Ultra-
sonography Images, taking into account the vast potential of DenseNet 
based models. 

ResNet50: ResNet-50 [21] is a convolutional neural network that is 
50 layers deep. ResNet50 is a variant of ResNet (Residual Net) [21] 
model which has 48 Convolution layers along with 1 MaxPool and 1 
Average Pool layer. It has 3.8 Billion Floating points operations. It is a 
widely used ResNet model and we have explored ResNet50 architecture 
in depth. In deep learning, deeper model are generally hard to optimize 
which effects the performance of deep models with more layers. ResNet 
utilizes network layers to learn residual mappings instead of directly 
trying to learn a underlying mapping. The ResNet model solves the 
previous optimization problems with deeper neural networks. In this 
study, we have incorporated the ResNet50 model as a pretrained base 
for feature extraction to diagnose Breast Cancer from Breast Ultrasound 
Images for experimentation purpose. 

3.3.2. Fully Connected Dense Layers: Classification of Breast Tumor 
Fully Connected Layers, also known as Dense Layers, are a sort of 

Neural Network in which every node in the previous layer is connected 

Fig. 5. Block diagram of modified U-Net model utilized in our proposed integrated pipeline.  
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to every node in the following layer, and the outputs of previous layers 
are used as inputs for the next layers. In this study as depicted in Fig. 6, 
we used 5 fully connected layers for classification, with a Dropout of 0.2 
between two dense layers of 1024 Neurons to minimize overfitting. For 
each dense layer, the widely known and efficient ’tanh’ activation 
function was utilized. The ’tanh’ activation function is generally 
computed as Eq. 3 [33], 

f (x) =
ex − e− x

ex + e− x (3)  

Here, f(x) denotes the activation function where x denotes the input of 
the function. At the end of the fully connected layer, a softmax layer with 
three nodes was utilized to map the class label for detection of breast 
cancer from breast ultrasonography images. 

4. Experimental Results 

This section contains a thorough depiction of results for various 
experimental stages in order to effectively illustrate the study’s findings. 
Broadly, our study has three stages of assessment, in terms of pre- 
processing, segmentation, and classification approaches. 

4.1. Dataset Description 

In this study, to validate the efficiency of our proposed deep inte-
grated pipeline, we have experimented our model on a benchmark 
dataset of Breast Ultrasonography Images [4]. It is a challenging dataset, 
with women ranging in age from 25 to 75 years old. The collection 
contains 780 photos, each of which is 500 x 500 pixels in size. PNG files 
are used for the images. This dataset contains raw and masked ultra-
sound images of Breast Cancer labeled as Benign (487 samples), Ma-
lignant (210 samples) and Normal (177 samples). We have adopted the 
sensitivity of Biomedical Domain at every stage of our framework and 
solved the challenges of noisy and complex artifact Breast Ultrasound 
Images to successfully detect Breast Cancer. For experimentation pur-
pose to ensure the clarity of the results, we have spitted our dataset with 
a hold-out validation ratio of 80:20 (training:testing) followed by a 
randomization seed of value 15 through incorporation of popular Scikit- 
Learn library in Python. 

4.2. Evaluation Metrics 

The choice of evaluation metrics are very important in domain of 
Artificial Intelligence for Biomedical or Health Care. Considering the 
sensitivity of Breast Cancer research, we have evaluated our Breast 
Cancer Detection models efficiency by incorporating below mentioned 
metrics [17] summarized in Table 1: 

4.3. Evaluation Stage 1: Segmentation 

In this stage of evaluation, we evaluated our segmentation module 
which is a very important part of our deep integrated pipeline. Seg-
mentation of Breast Ultrasound Images is a very challenging task in the 

domiain of Computer Vision for Medical Imaging as Ultrasonography 
Images have complex artifacts, highly noised and posses multi-co- 
linearity issues [37]. 

To solve this issue, in our study we have experimented with two state 
of art unsupervised image segmentation method K-Means++ and SLIC 
(Simple Linear Iterative Clustering) as a part of preprocessing Ultraso-
nography Images to corroborate the performance of Modified-UNET for 
semantic segmentation. The Modified U-Net model for segmentation 
was trained for 300 Epochs and the best weights according minimum 
binary cross entropy loss selected as segmentation model. Table 2 
illustrate the performance of U-Net segmentation in terms of Binary 
Cross Entropy Loss and Dice-Coefficient Scores on testing dataset. 

The high dice-coefficient scores and low binary cross entropy loss 
score of SLIC (Simple Linear Iterative Clustering) integrated Modified- 
UNET in comparison to UNET without preprocessing and UNET with 
K-Means++ validates the relevance of including SLIC based unsuper-
vised segmentation as a part of preprocessing to corroborate Modified- 
UNET for better semantic segmentation of Ultrasound Images. Howev-
er, the results from Table 2 also illustrates that pre-processing with K- 
Means++ is not effictive method for Breast Ultrasonography Images as 
it is worsening the result. From a hypothetical analysis of K-Means++

based unsupervised segmentation of Breast Ultrasonography images, as 
breast ultrasonography images is highly noised and highly correlated 

Fig. 6. Classification Model of Breast Cancer Detection.  

Table 1 
Description of Performance Evaluation Metrics.  

Metric Description 

True Positive (TP) The case when patient is actually suffering from the cancer 
and the model also classified as positive. 

False Positive (FP) The case when patient is not suffering from the cancer but the 
model classified as positive. 

True Negative (TN) The case when patient is not suffering from the cancer and the 
model also classified as negative. 

False Negative (FN) The case when patient is actually suffering from the cancer 
but the model classified as negative. 

Accuracy It defines correctly identified category of Breast Cancer. It is 
defined as: Accuracy = (TP  + TN)/ (TP  + FP  + TN  + FN) 

Recall/True- 
Positive Rate: 

It is defined as the ratio of the number of samples that have 
been correctly predicted corresponding to all of the samples 
in the data. It can define as- Recall  = TP/ (TP  + FN) 

Precision It is defined as the ratio of the number of samples that have 
been correctly predicted corresponding to all samples of the 
particular category. It can define as- Precision  = TP/ (TP  +
FP) 

F1-Score It is defined as the term that balances between recall and 
precision. It can define as- F1-Score  = 2 * (Recall * Precision) 
\(Recall  + Precision)  

Table 2 
Performance Evaluation Scores of Ultrasound Image Segmentation.  

Method Binary Cross Entropy Loss Dice Coefficient Score 

SLIC & UNET 0.2149 63.4 
KMeans++ & UNET 0.2547 57.31 

UNET 0.2595 60.67  
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dominant black and white pixel have overlapping issues, it is noticed 
that K-Means++ is actually clustering the image pixels in a way which is 
increasing the multi-co-linearity issue in the pixel distribution of Breast 
Ultrasonography Images. This scenario is also reflected through Fig. 3. 
This proves K-Means++ inefficient for incorporating it in our proposed 
architecture as part of pre-processing for Breast Ultrasonography Image 
Segmentation. It is new finding in the domain of Breast Ultrasonography 
Image analysis which have been presented in this study, with strong 
evidence. 

The learning curves of SLIC integrated modified UNET model is 
illustrated in Fig. 7. It delineates that the model’s performance is 
increasing with the increasing number of epochs in terms of Dice- 
coefficient scores for both training images and validation images. The 
volatility and discrepancy between the learning curves of training and 
validation data, on the other hand, indicates a slight overfitting prob-
lem. This slight overfitting is caused by the fact that we have less 
training and validation samples because our dataset is smaller in terms 
of deep learning. Because of their intricacy, deep learning models in 
general tend to overfit. A slight overfitting can be ignored if the model’s 
overall potential is significant. To ensure minimum overfitting, the best 
weights based on maximum validation dice-coefficient scores have been 
finalized for our proposed model at the end of training stage for further 
experimentation purpose. According to the dice-coefficient scores and 
binary cross entropy scores, we elected the configuration of pre- 
processing with Simple Linear Iterative Clustering (SLIC) leading to se-
mantic segmentation with modified U-Net for the integration into our 
proposed deep integrated pipeline for detection of Breast Cancer from 
Breast Ultrasonography Images. 

4.4. Evaluation Stage 2: Detection of Breast Cancer 

In this stage of evaluation, we have investigated the performance of 
our proposed deep integrated model in comparison to other possible 
state of the art configurations. Table 3 delineates the performance of 
state of the art transfer learning models for in terms popular evaluation 
metrics including Precision, Recall and F1-Scores for three classes 
Benign, Malignant and Normal. 

By analyzing the scores of evaluation metrics presented in Table 3, it 
is evident that the pretrained VGG 16 model with the integration of SLIC 
and Modified UNET is comparatively outperforming in most of evalua-
tion criteria against other pretrained model used for feature extraction. 

However, as the dataset is highly imbalanced in terms of class distri-
bution, an efficient model should be able to detect the three classes 
efficiently with a balanced performance. Considering this, we investi-
gate the Weighted Average of Precision, Recall and F1-Scores to identify 
the most consistent pretrained model for classification in this stage. The 
weighted average scores of Precision, Recall and F1-Score is illustrated 
in the Fig. 8. 

From Fig. 8, it is clearly visible that VGG 16 with the above 
mentioned settings is out-performing all other state of the art pretrained 
models with a consistent performance in Weighted Average Scores of 
Precision, Recall and F1-Score. However, the ResNet50 pretrained 
model is evincing a competitive score in terms of Weighted Average 
Precision. But in Weighted Average Recall and F1-Scores the perfor-
mance of ResNet model is exacerbating. The other two pretrained 
models DenseNet121 and VGG 19 is also showing consisting perfor-
mance but not outperforming the performance of VGG 16 model. 

The depiction of Accuracy Score of integrated combinations have 
been depicted in Fig. 9. 

To validate the consistency in performance across all three classes 
(Benign, Malignant and Normal) of Breast Cancer, we computed Stan-
dard Deviation of Precision, Recall and F1-Scores for Benign, Malignant 
and Normal samples, presented in Table 4. The low standard deviation 
scores of VGG 16 model among all classes in comparison to other 
models, proves it as the most consistent model for Breast Cancer 
Detection from Ultrasonography Images. 

5. Discussion 

In segmentation stage of the study, we can see from the Table 2 that 
the SLIC integrated U-Net’s Dice-coefficient score is 63.4 which about 3 
units higher than U-Net without any pre-processing. And so, it is clearly 
visible from the results presented in Table 2 that the integration of 
Simple Linear Iterative Clustering (SLIC) as a pre-processing step com-
plements the semantic segmentation task with modified U-Net. More-
over, the binary cross entropy loss of SLIC integrated UNET is minimum 
of all other combinations. This supports the hypothesis that super-pixel- 
based features can be used to improve the performance of semantic 
segmentation or pixel-wise classification of breast ultrasound images. As 
a result, Simple Linear Iterative Clustering (SLIC) has been considered as 
a strong candidate for incorporation in our proposed deep pipeline. 
However, only segmentation or pixel-wise classification is not enough 
automating the whole process of breast cancer diagnosis. And so, we 
investigated further the potential possibility of integrating these mod-
ules into one single framework leading to final diagnosis. In the final 
breast cancer detection stage, after rigorous analysis of scores based on 
standard evaluation metrics, the VGG 16 model along with SLIC and 

Fig. 7. Semantic Segmentation with UNET with SLIC Preprocessing.  

Table 3 
Classification Scores of SLIC  + UNET  + Transfer Learning.  

Classifiers SLIC þ
UNET  þ
VGG 19 

SLIC  þ
UNET  þ
VGG 16 

SLIC  þ
UNET  þ
ResNet50 

SLIC  þ UNET  þ
DenseNet121 

Precision 
(B) 

74.74% 74.49% 69.73% 74.74% 

Recall (B) 81.61% 83.91% 87.36% 81.61% 
F1-Score 

(B) 
78.02% 78.92% 77.51% 78.02% 

Precision 
(M) 

60.00% 72.50% 84.61% 62.75% 

Recall (M) 61.36% 65.91% 25.00% 72.73% 
F1-Score 

(M) 
60.67% 69.05% 38.60% 67.37% 

Precision 
(N) 

68.75% 72.22% 61.77% 80.00% 

Recall (N) 44.00% 52.00% 84.00% 32.00% 
F1-Score 

(N) 
53.66% 60.47% 71.19% 45.70%  
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UNET, evinces the capability of most potential combination for inte-
grating it in the domain of Breast Cancer Detection from Breast Ultra-
sonography Images with a Accuracy of 73.72 % obtained from Fig. 9, 
which is significantly higher than other experimented combinations. In 
biomedical domain, in terms of disease diagnosis, the Recall value is a 
significant measure which should higher for an efficient artificial in-
telligence model. From Fig. 8, it is evident that the Weighted Average 
Recall value of SLIC-UNET-VGG16 combination is 73.72% which is 
significantly higher than other combinations. Further more, Weighted 
Average Precision and F1-Score of this combination is slightly higher 
with a value of 73.57% and 73.18% accordingly. It shows that SLIC- 
UNET-VGG16 can diagnose breast cancer malignancy with greater 
precision than other combinations, which is a critical criterion in 
biomedical diagnostics. Additionally, the VGG 16 model is also a light-
weight model with less parameters to train in comparison to other 
models. The two major findings of this study are: 

• For highly noised breast ultrasound images, clustering-based unsu-
pervised segmentation with K-Means++ degrades the performance 
of semantic segmentation model U-Net, whereas super-pixel-based 
unsupervised segmentation with SLIC complements the perfor-
mance of semantic segmentation model U-Net.  

• In breast cancer diagnosis from breast ultrasound images, despite 
being a lightweight integrated architecture with fewer parameters to 
train, SLIC-UNET-VGG16 is outperforming as a deep integrated 
pipeline based on statistical evaluation. 

However, as stated in the Section 2, in previous state of the art studies, 
researchers separately worked with segmentation or classification of 
breast ultrasonography, histopathology and MRI images. But to ensure a 
complete automated diagnosis which helps the medical practitioners to 
provide an early diagnosis at low cost a complete integrate pipeline of 
breast cancer diagnosis is necessary. An end to end integrated pipeline is 
crucial for industry level medical application to support breast cancer 
diagnosis. And so, considering the potential findings and rigorous 
analysis, we propose a deep integrated model including SLIC (Simple 
Linear Iterative Clustering) as a part of pre-processing and Modified 
version of U-Net for semantic segmentation leading to pretrained VGG 
16 model for feature extraction for classification purpose and in the end 
a combination of fully connected layers for Breast Cancer Detection from 
Breast Ultrasonography Images. 

6. Conclusion 

For decades, breast cancer has been a source of great concern among 
women all over the world. Every year, many potential lives are disrupted 
by Breast Cancer, and many of them die prematurely. Breast cancer 
detection at an early stage is a significant challenge in the field of cancer 
research. In this study, we explored the possibilities of Deep Learning 
and Computer Vision methods to analyze Breast Ultrasonography im-
ages in order to detect Breast Cancer at an early stage in a fully auto-
mated manner. However, Breast Ultrasongography Images are highly 
noised and complex in terms of pixel intensity distribution for ROI 
(Region of Interest) and Non-ROI (Other areas than ROI). To tackle this 
issue, we proposed a deep integrated automated pipeline, including 
Simple Linear Iterative Clustering (SLIC) based preprocessing followed 
by Semantic Segmentation with a modified version of U-Net leading to 
classification with Pretrained ConvNet Feature Extractor based Neural 

Fig. 8. Weighted Average Precision, Recall and F1-Scores of Deep Learning Models for Breast Cancer Detection.  

Fig. 9. Accuracy Scores of Deep Learning Models for Breast Cancer Detection.  

Table 4 
Standard Deviation of F1 Scores, Precision and Recall among Three Classes.  

Classifiers SD of F1 
Score 

SD of 
Precision 

SD of 
Recall 

SLIC + UNET  + VGG 19 0.1254 0.0741 0.1882 
SLIC  + UNET  + VGG 16 0.0923 0.0124 0.1600 
SLIC  + UNET  + ResNet50 0.2088 0.1160 0.3507 
SLIC  + UNET  +

DenseNet121 
0.1647 0.0884 0.2645  
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Network. However, based on statistical analysis of performance, the pre- 
trained VGG16 model proved to be a better feature extractor than other 
state of the art pre-trained models as part of the proposed integrated 
model. In future, we would like to collect more and more representative 
Breast Ultrasonography Data to train our models more effectively. Deep 
generative models, such as GAN (Generative Adversarial Network), have 
a high potential for augmenting data to tackle data scarcity problems in 
small datasets, complementing deep learning-based classification. So, 
we would integrate Generative Adversarial Network based data 
augmentation in this deep integrated pipeline to alleviate the perfor-
mance of our proposed deep integrated framework. Furthermore, 
transformer-based attention models, which were previously popular for 
Natural Language Processing challenges, are currently being applied in 
the Computer Vision area due to their less complex nature and faster 
processing capability when compared to convolutional layers. In future, 
we will also explore the possibility of integrating attention based 
transformer models including Vision Transformer in our deep integrated 
framework to improve the accuracy of breast cancer diagnosis. Our 
proposed deep integrated pipelining framework could be applied effi-
ciently in various bio-medical industries to solve additional issues in 
cancer research via automated detection, supporting medical practi-
tioners in protecting humanity from the assault of devastating 
malignancies. 
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